

 ISSN 2229-6107 www.ijpast.in

 Vol 11, Issue 4. Nov 2021

Frequency Synthesis with an FPGA Using a Partial

Reconfiguration-Based Method

Y. Pratap Kumar
1
, Sd. Shakeera Sulthana

2
, Y. Santhosh Kumar

3
, K. Suresh

4
 ,

Abstract

Dedicated FPGA clock managers are increasingly required to get clocks for high-speed, high-density devices. The variety of uses they

may serve is directly proportional to their adaptability and programmability. Modern FPGA designs, like the Xilinx Vertex Series,

provide partial and dynamic reconfiguration at run time. Because the FPGA fabric's configuration data is mutable at runtime, the

system may be tailored to the requirements of an application by swapping out individual pieces of an existing hardware design. A novel

method of Digital Frequency Synthesis using FPGA clock management is described in this paper. In the suggested approach, a DCM

primitive's frequency synthesis is performed by way of the Fabric's reconfigurable module and its Dynamic Reconfiguration Port (DRP).

The design draws attention to Partial Reconfiguration based design techniques, which allow a DCM's clock frequency to be

reconfigured dynamically to meet the changing requirements of a running application. On-the-fly frequency and phase adjustments are

both quick and accurate. First, a Virtex-5 FPGA board is used to mimic the proposed design before it is really developed and tested in

the lab.

Key words :

FPGA, Digital Clock Manager, PR Flow, Reconfiguration Module, Virtex-5, Software Defined Radio.

Introduction

Field Programmable Gate Arrays (FPGAs) are

growing in size and complexity, making clock

distribution a critical concern. Keeping high clock

speeds has gotten more challenging as the

complexity and size of integrated circuits continue

to increase at an exponential pace. The addition of

clock managers to FPGAs [1-4], [17] helps to

address clock distribution issues and enhances the

devices' adaptability and usefulness. Designers may

adjust clock synchronization between components

operating at various frequencies by multiplying and

dividing the clock frequencies on and off chip.

Software Defined Radio (SDR) is one example of a

waveform-based application; in this case, the

waveform design engineer may need multiple

frequencies at runtime depending on the waveform

of the chosen communication standard [1].SDR

implementation is made possible by the unique

characteristics of FPGAs. High-speed interfaces,

embedded DSP blocks, phase-locked loops, and

Assistant Professor 1
.23,4,5

,

Mail Id : prathapkumar231@gmail.com, Mail Id : shakirasulthana.sayed@gmail.com Mail

Mail id : santhonani@gmail.com Mail Id : sssureshk1@gmail.com

Department of EEE,

Swarna Bharati Institute of Science and Technology (SBIT),

Pakabanda Street,Khammam TS, India-507002.

http://www.ijpast.in/
mailto:karpurapu.gavasj@gmail.com,Mail

 ISSN 2229-6107 www.ijpast.in

 Vol 11, Issue 4. Nov 2021

large memory capacities are all examples. The

military also greatly benefits from the system's

flexibility to execute updates and reconfiguration of

waveforms in the field. With the rise of Software

Defined Radio (SDR) and Cognitive Radio (CR),

framework compliance with low power design and

Dynamic Reconfigurability is becoming more

important [4].

The Circuit Manager for Digital Clocks

FPGAs with built-in DCMs are superior than other

options because they eliminate clock management

issues in high-speed design. DCMs simplify design

and reduce the cost of development and testing for

systems requiring clocking services such as

frequency synthesis, phase alignment, board

disked, compliance with source synchronous

interface standards, clock-data synchronization, and

clock switching. As can be seen in Figure 1(a), it

may function as a clock delay locked loop, a digital

frequency synthesizer, a digital phase shifter, and a

digital spread spectrum. Input clock frequencies

may be multiplied, divided, and phase-shifted using

DCM's clock management system. By connecting

the CLKFB input to a node on the global clock

network powered by the CLK0 output of the same

DCM, on-chip synchronization may be established.

The suggested design makes use of the DCM_ADV

Primitive, seen in figure 1(b), which has access to

all DCM functionalities. Many on-chip DCM

circuits with zero propagation delay and lowest

jitter performance[5-6], [17] are provided by the

Xilinx-Virtex-5 utilized in this application.

Figure 1 (a) DCM Block; (b) DCM Primitive Block

DFS stands for "digital frequency

synthesizer."

The suggested architecture makes use of the DFS

function of the clock management. The DCM's

clock multiplication and division operations allow

for a large variety of output clock frequencies to be

synthesized from a single input clock [7]. The input

frequency may be multiplied, divided, or even

multiplied and divided in a wide variety of ways,

all of which are made possible by the Frequency

Synthesizer. The CLKFX and CLKFX180 outputs,

together with the CLKFX_MULTIPLY and

CLKFX_DIVIDE properties, allow for a frequency

synthesizer in which the CLKIN input may be any

multiple or division. If feedback is sent to the

DLL's CLKFB input, then every

CLKFX_MULTIPLY cycle of CLKFX and every

CLKFX_DIVIDE cycle of CLKIN will result in

CLKFX and CLKIN being in phase with one

another. This equation describes CLKFX's

frequency.

The CLKFX and CLKFX180 outputs are fully

compatible with each other. The CLKFX180

frequency is the CLKFX frequency shifted by 180

degrees. The duty cycle of CLKFX and

CLKFX180 is a constant 50%.

DRP stands for "dynamic

reconfiguration port."

As shown in Figure 1(b), the DCM's clock output

frequency may be dynamically adjusted through the

port labelled "Dynamic Reconfiguration Port" [7].

The initial DCM parameters may be updated via

the DRPs without having to feed a fresh bit stream

into the FPGA. To alter the presently configured

phase shift, frequency, or frequency mode,

Dynamic Reconfiguration allows for the

modification of DCM properties. Each functional

block has a dynamic reconfiguration port built in

in, which makes setup a breeze. The clock outputs

may be adjusted on the fly while the design is in

operation. Variables such as frequency, division by,

and multiplication by may all be adjusted on the

fly.

Techniques for performing a partial

reorganization

 When an FPGA supports partial reconfiguration

(PR), only a subset of its logic may be changed

after initial setup. Partial Dynamic Reconfiguration

(PDR) [8-9],[17] is a method that has become

available as a result of advancements in FPGA

technology that enable the designer to

update/reconfigure just a certain area of the internal

structure of the FPGA at run-time. By reusing and

reconfiguring hardware cores (IP blocks), PDR

makes it feasible to construct dynamic systems that

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in

 Vol 11, Issue 4. Nov 2021

respond to the requirements of the application in

real time. This keeps the FPGA functioning without

jeopardizing the security of the applications using

the sections of the FPGA that are not being

changed. When doing a partial reconfiguration,

there are two primary methods [8]: Partial

Reconfiguration Based on Modules: Modular

Design Flow is the foundation for this approach.

Reconfigurable modules (RM) are the building

blocks from which the whole design may be

assembled. A Reconfigurable Partition (RP) is a

block of computer memory in which reconfigurable

modules (swappable logic) are stored. Partially

reconfiguring Xilinx devices is where this

technique shines. Modifying a design slightly and

then creating a new bit stream based on the

differences between the two designs is difference-

based partial reconfiguration.

suggested Experimental Layout

 In this study, we offer a framework for doing such

dynamic reconfiguration of Digital Clock

Managers through the Partial reconfiguration

method. This method of clock scaling requires

careful planning and construction of the system.

Since it is not possible to install a DCM primitive

in the Reconfigurable zone of an FPGA, this

particular primitive was instantiated in the Static

region [3, 4]. Partial Reconfiguration is required to

build implementations of the same system with

various DCM setups. Two key parts, the DCM

module in the static zone and the DCM controller

module in the reconfigurable region, make up the

logic design approach provided here. The RTL

schematics of the design components are shown in

Figure 2. Using the Xilinx Virtex-5 board ML506

and the XC5VSX50T- FFG1136 device, the

suggested architecture for run-time

Reconfigurability of DCM was developed and

confirmed.

Figure 2 RTL schematic Diagram

The following is the established order for the

experimental particulars: The Modules and their

hierarchical structure are described in Section 5.1.

The outcomes of Design and Simulation are

discussed in Section 5.2. The implementation

procedure based on Partial Reconfiguration is

presented in Section 6. The acquired findings and

their quantitative comparison are discussed in

Section 7. The implementation overview and

Future design considerations are separated into

their own sections (8 and 9).

 Module and Organizational Structure

The hierarchical netlist is shown in Figure 3. The

Top and DCM modules are part of the design's

static zone, which means that they continue to

function normally when the other modules are

being changed [10].

Figure 3 Design Hierarchy Flow

The DCM component of the Static Region's

reconfiguration is managed by the DCM_Cntrl

module through the DRP port interface. The top-

level design is synthesized in sections, with each

section later being included into Xilinx's Plan

ahead tool. Its unique features include the

generation of partial reconfiguration files, which

are required for partial reconfiguration [9], and the

designer's ability to actualize a modular idea with

specified placement limitations.

Efforts Made in Design and Simulation

The architecture used here utilizes both the FPGA's

(a) Dynamic reconfiguration port of DCM and (b)

Partial Reconfiguration (PR) flow technologies. For

Glitch-free and timing-accurate operation, the

DCM control Logic for reconfigurable Partition has

been built in VHDL utilizing the State machine-

based method. Before putting the suggested

segmented design into hardware, we used Xilinx

ISE software to do a behavioural simulation of the

proposed DRP control logic. The circuit is

emulated in a Xilinx simulator from VHDL code.

The suggested architecture is implemented when

the design of the Digital clock management circuit

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in

 Vol 11, Issue 4. Nov 2021

has been confirmed. Using the readily accessible

FPGA templates, we additionally validate the DCM

block shown in Figure 1. Frequency Synthesizer

output CLKFX from the DCM is the primary focus

of the design implementation. For clock synthesis,

you may use the multiplier and divider values

specified in the vendor's datasheet [7]. The

procedures below are part of the simulation result

displayed in Figure 4 for reconfiguring the DCM

through its DRP port. Here is how the process will

unfold:

Figure 4 Simulation results of DRP Logical Block

. Module-based Implementation vs.

Partial-Reconfiguration-Based

Implementation

 The Partial Reconfiguration capability of the

FPGA is used in this unique strategy. This method

of clock scaling requires very particular system

architecture. Since it is not possible to insert a

DCM primitive in the Reconfigurable zone of an

FPGA, one of these primitives was instantiated in

the Static region [12–14]. Partial Reconfiguration is

required to build implementations of the same

system with various DCM setups. Floor planning,

physical constraints, and partial bit files are

prepared with the help of the Plan Ahead tool, and

the design is synthesized using Xilinx ISE. The PR

flow [8, 15] is used to split the system into fixed

and dynamic sections, as shown in Figure 5(a).

Depending on the use case, different bit files will

be created for each RP. Downloading one of

several partial bit files—Frequency_LF.bit,

Frequency _HF.bit, or Frequency_VHF.bit—based

on the relevant Waveforms application modifies the

functionality provided in Reconfigurable Partitions.

Figure 5 (a) Reconfigurable Partition Blocks; (b) Pblocks of

Reconfigurable Partition

 Figure 5(b) depicts the partitioning of the FPGA

fabric into the physical design reconfigurable

blocks (Pblock). For each Pblock, partial bit files

were created after considering various

configurations [8, 15].

Implementation Based on Distinctions

In order to produce a partial bit stream containing

just the differences between the two designs, the

Difference Based design flow requires the Full Bit

file and the updated Native Circuit Description,

NCD file as inputs. A new NCD file was created so

that the internal clock synthesis registers could be

modified in an FPGA editor. This design process

works well when only small adjustments need to be

made and there is no need to reorganize any major

functionality. FPGA Editor provides a high-level

view of the routed design. Due to its ability to

isolate the DCM reconfiguration phase, Difference

Based techniques are preferable since they result in

lower partial bit streams and much reduced

reconfiguration time. However, it's not a good fit

for a setup that makes extensive use of

Reconfigurable Modules.

Changes in Organization Only Partial

 Reconfiguration Time as Observed

One of the innovative benefits of the suggested

implementation flow is a short setup time. One

PRM's area was measured to be 25 KB on this test

system. Table 1 displays the estimated Partial

Reconfiguration Time (PRT) using the formula

[14]:

Table 1 Measured Reconfiguration Time

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in

 Vol 11, Issue 4. Nov 2021

 Observed Power Reduction

Total Power consumption was measured using

XPower Analyzer available with Xilinx ISE

Environment. The Fmax for the tested design is

100 MHz. Table 2 compares the measured power

dissipation, using the proposed technique and

traditional method.

Table 2 Measured Power Consumption at

Fmax=100 MHz

A reduction of 107mW of power obtained with the

proposed implementation flow. The PR based

design and size of the bit file leads to decrease in

power consumption.

 Implementation summary

The Virtex-5 SXT FPGA included in the ML506

Evaluation platform has been used to test the DRP

Reconfiguration Logic we outlined before [10]. On

the other hand, any Xilinx FPGA with DCM_ADV

basic characteristics may be used to implement it.

Except for blocks that vary per FPGA fabricant,

like the DCM, the whole FPGA's logic was

specified in generic VHDL code. These building

blocks were made by either instantiating

component primitives or using the Xilinx Coregent

tool. Design synthesis and simulation are

performed in the Integrated Software Environment

(ISE). Functional, post-place-and-route simulation,

and bit file creation were all accomplished with the

help of Xilinx's Plan Ahead tool. The high

performance mandated by the time limitations was

attained by the usage of FSM-based VHDL coding

approaches.

conclusion

With the introduction of reconfigurable

architectures, users now have the chance to install

and implement a wide variety of novel programs.

The presented framework aids in making full use of

the DCM resources already present on FPGA,

which may reduce the requirement for further

hardware. However, this article focuses on how a

design cantered on hardware and software reuse is

crucial to the success of these applications.

 References

[1] Steven W. Cox, Joel A. Seely, “Rapid SDR waveform

development in FPGAS using DSP builder”, CF-SDR031505-

1.0.

[2] Kevin Skey, John Bradley, Karl Wagner, “A Reuse

Approach For FPGA-Based SDR Waveforms”, Case No. 06-

0796.

 [3] Katarina Paulsson,et al., “,Exploitation of Run-Time

Partial Reconfiguration for Dynamic Power Management in

Xilinx Spartan III-based Systems.”

[4] Altera, FPGA Run-Time Reconfiguration: Two

Approaches: A White Paper, WP-01055-1.0, March 2008, ver.

1.0.

[5] Majd Ghazi Batarseh, et al., Window-Masked Segmented

Digital ClockManager-FPGA-Based Digital Pulsewidth

Modulator Technique, IEEE transactions on power

electronics, vol. 24, no. 11, November 2009.

[6] Xilinx, Virtex-5 FPGA User Guide, UG190 (v5.3),

www.xilinx.com May 17, 2010, Page 50. [7] Xilinx, Virtex-5

Configuration Guide UG191, www.xilinx.com, August 20,

2010, Page 106.

 [8] Xilinx, Partial Reconfiguration User Guide UG702

(v12.3), October 5, 2010, Page 17& 27&103.

 [9] Julien Delorme, et al., “A FPGA partial reconfiguration

design approach for cognitive radio based on NoC

architecture”, IEEE,2008.

 [10] Xilinx, ML505/ML506/ML507 Evaluation Platform,

UG347 (v3.0) www.xilinx.com, May 19, 2008.

[11] J. Jones, M. Stettler , “Dynamic Reconfiguration and

Incremental Firmware Development in the Xilinx Virtex

5”,2008.

[12] Ross Hymel, Alan D. George , “Evaluating Partial

Reconfiguration for Embedded FPGA Applications”, 2004.

[13] P. Sedcole, et al., “Modular dynamic reconfiguration in

Virtex FPGAs”, IEE Proceeding on Digit. Tech., Vol. 153, No.

3, May 2006.

[14] Bjorn Osterloh,et al., “Dynamic Partial Reconfiguration

in Space Applications”,2009 NASA/ESA Conference on

Adaptive Hardware and Systems.

[15] Wang Lie, Wu Feng-yan , “Dynamic partial

reconfiguration in FPGAs” ,Third International Symposium

on Intelligent Information Technology

Application,2009,IEEE.

[16] John Huie, et al., “Synthesizing FPGA Cores For

Software-Defined Radio”, CF-SDR031405-1.0.

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in

 Vol 11, Issue 4. Nov 2021

[17] Ian Brynjolfson and Zeljko Zilic, “FPGA Clock

Management for Low Power” , McGill University, 2008.

http://www.ijpast.in/

